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-ABSTRACT 

The Hirschfelder-Silbey perturbation theory") has been applied to the 
b 

H: molecular ion. The first order perturbation equation has been solved 

by means of a variational method and the resulting gerade and ungerade 

energies are given through third order. 

The ungerade energy is in very good agreement with the exact energy, 

but the corresponding gerade energy is relatively poor. These results are 

currently under investigation. 
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Introduction 

In a recent report HirschfePder and Silbey") have developed a new 

perturbation scheme for the invesrigation of atomic and molecular systems. 

This method uses a product of atomic or molecular orbitals as the zeroth 

order wave function and has the feature that all quantum states arising 

from a single electron configuration are treated simultaneously. 

Here we report some results obtained from the application of this 

+ 
method to the simple case of the H2 molecular ion. 

Theory for H, 
1 + 

+ The lowest gerade and ungerade states of H2 have wave equations 

(see figure 1) +- '  = I  \ zv - - - -  -G T b  

We write the wave functions in the form 
\ 

where a and b are atomic orbitals centred on atoms A and B 

respectively (see figure 1) and N and NU are normalization constants. g 



(3) 

figure 1 

Substituting equations (2) into (1) and adding the resulting equa 

gives 

which is the equation we wish to solve by perturbation methods. 

We write 

a =  a(')+ a(') + a(') + ---- 

b = b(')+ b(l) + b(') + ----  

E = E(')+ E (') + E (') + ---- 

(1) (2)  + ---- 
g g g 

U + EU 
E = E(')+ E 
U 

H = Ha+Va=H,,+Vb 

where 

- 1 2  1 Ha - - 2 V  - -  r a 
- 1  
r 

1 2  
Hb = - 2 v  - 

va = - lhb 

Vb = - l lr ,  

b 

ions 
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Substituting these expressioss i c t o  ( 3 )  and equating terms of like order 

we obtain the set of perturbation equations. 

Ha is the Hamiltonian of a hydrogen atom centred on A and we 

choose a to be the ground state eigenfunctions of the hydrogen atom; 
&O\ 

is hence the ground state energy of the hydrogen atom (= -0.5 a.u) 

A knowledge of \cI and$ through nth order determines the energy 
U 

through (2ni-1)st order. SO we require 



which means t h a t  we have 

be normalized or or thogonal  t o  h igher  o r d e r  wave func t ions .  i .e.  

A l s o  from the  above r e l a t i o n s h i p s  w e  o b t a i n  t h e  fol lowing express ions  

f o r  t h e  energy t e r m s  up t o  t h i r d  o rde r .  



It should be noted t h a t  when the  exac t  a i s  known t h e  express ion  

However, when so lv ing  f o r  a 

working wi th  t h e  exac t  a (" 

by a v a r i a t i o n a l  method w e  a r e  n o t  

so (6) should be used t o  ob ta in  

So lu t ion  of t h e  f i r s t  o rder  equat ion by a v a r i a t i o n  method 

I f  w e  cons t ruc t  t he  func t iona l  

w e  see t h a t  when J is s t a t i o n a r y  with r e s p e c t  t o  f i r s t  o rde r  v a r i a t i o n s  

of x then x i s  a s o l u t i o n  of t h e  f i r s t  o rder  equat ion (4). 
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1.f we expacd in a complete set of functions 

= )'Cn$* 

then 

0 where a/* 

We require J to be stationary w.r.t. changes in the C's 

i.e. = 0 = X ' C ~ ~ , Q  + ).c, HQVW 
a=% h m 

- c Z C p \ - \ q p  + 2% 
The prime indicates that the n = term is omitted from, the summation, 

i 

Since Hnp = H t a  we have 
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I 

2 L c n H n 4  t 2Lp = 0 

I n  gene ra l  we need 

- c a x  - = - - -  = o  a s  a s  - 
a CI acz ace 
- =  - - - - - - -  

which g ives  an i n f i n i t e  set of equations of t h e  form (10). I f  w e  

c cons ider  only a f i n i t e  number of bas i s  func t ions  i n  the  expansion (8) 

for X i.e. w r i t e  
U 

(Lt b 

equat ions  (10) may be w r i t t e n  a s  then t h e  set of N 

That i s  

c ' Hal=  -v 
so c -  - +j-'p# 

- -  e 

For a given b a s i s  set t h e  mat r ices  

and hence 
and may be obtained 

i s  der ived by the  usual  mat r ix  inve r s ion  techniques.  



... 

The s e t  of b a s i s  func t ions  used were t h e  LBwdin o r b i t a l s ( * )  which 

have t h e  gene ra l  form 

where 

a r e  t h e  Laguerre polynomials, 

This se t  of func t ions  appear s u p e r f i c i a l l y  t o  be s i m i l a r  t o  the  

hydrogenic func t ions  however they  have only one func t ion  i n  common, t h a t  

i s  t h e  ground s t a t e  Is hydrogen e igenfunct ion .  The advantage gained 

by us ing  t h e  LUwdin o r b i t a l s  i s  t h a t  a denumerably i n f i n i t e  set of them 

i s  complete, whereas t h e  hydrogenic o r b i t a l s  form a complete set  only  

when continuum s t a t e s  a r e  included. It i s  hoped t h a t  an expansion in 

terms of Luwdin o r b i t a l s  w i l l  converge t o  t h e  s o l u t i o n  for 

r a p i d l y  than an expansion of hydrogenic o r b i t a l s  would. 

a ('1 more 

From an examination of t h e  f i r s t  o rde r  equat ion  

w e  see t h a t  t h e  equat ion  has a pole  a t  r = 0 ; w e  t h e r e f o r e  expec t  a 

s i n g u l a r i t y  i n  t h e  s o l u t i o n  a t  

b 

r b = O .  

Now near  r = 0 t h e  second t e r m  i n  (13) has  t h e  form b 
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" 

If we write b o  since r = R at r a 

So introduction of a term of the form C e -%(O) in a ('1 will 

remove the singularity at P = 0 . 
- P 

b 
In the light of this the trail a(') was constructed from a linear 

combination of e with a finite set of tthodin orbitals. The 

finite set chosen did not include the Is orbital hence each term in 

. In order to solve (11) for the matrix (0) the set was orthogonal to a 

6 it is necessary first to have the matrix elements H and Vn . nm 



The 

and L f j ~ d l n ' ~ )  . We have, 

Hnm elements may be obtained d i r e c t l y  from the  work of Hirsch fe lde r  

I n  t h e  de r iva t ion  of t h e  elements V t h e  func t ions  have been w r i t t e n  n 

i n  t e r m s  o f  t h e  p r o l a t e  sphe ro ida l  coord ina te s  def ined  by (see f i g u r e  1) 

which g ives  

c 



F r o m  (9)  w e  have 

where t h e  d i f f e r e n t  rig r e f e r  t o  d i f f e r e z t  va lues  of n and . 
W e  can express  t h e  f u n c t i o a s  i n  terms of sphe ro ida l  

coord ina tes  us i zg  che re1a;;or.s 
i 

where 

and 

When t h i s  i s  done we obtair!  2x~ressiozsfor 

which a r e  given i n  t h e  appe-ndlx. 

Hence using these  results and may be cons t ruc ted  

and a found. 



Once w e  have f o r  some f i n i t e  b a s i s  s e t  of func t ions  w e  can 

use t h e  approximate a (') they d e f i n e  t o  c a l c u l a t e  t h e  e n e r g i e s  
L 2) (3) 

a d  E($)  (1) . This has  been done (making use of t h e  

i n t e g r a l s  given i n  the  appendix) f o r  d i f f e r e n t  sets of b a s i s  func t ions  

and some of t h e  r e s u l t s  a r e  given i n  t a b l e  2. 

D i s cus s i. on 3 f Resul t s  

W e  should no te  two p o i n t s  i n  connection wi th  t h e s e  r e s u l t s .  F i r s t ,  
Y 

although t h e  v a r i a t i o n a l  method we a r e  us ing  t o  s o l v e  equat ion  ( 4 )  w i l l  

given an approximate a which improves a s  b a s i s  func t ions  a r e  added 

success ive ly ,  the  expec ta t ion  va lue  of t h e  Hamiltonian c a l c u l a t e d  us ing  

t h e  wave func t ion  through f i r s t  o rde r  ( i . e .  &(I) ) w i l l  n o t  

n e c e s s a r i l y  decrease  a s  each new b a s i s  f u n c t i o n  i s  added. That i s  t h e  

v a r i a t i o n  method does no t  s y s t e m a t i c a l l y  g ive  a s t a t i o n a r y  va lue  of 

The second p o i n t  i s  t h a t  t h e  second-order energy f o r  t h e  ungerade 
12. 

s t a t e ,  Eq 

Rayleigh-Schrudinger theory where E'" S o , always. 

i s  p o s i t i v e  i n  c o n t r a s t  t o  t h e  r e s u l t s  of t h e  u s u a l  

Suppose w e  t a k e  the  o r i g i n a l  wave equat ion  

and expand 
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Y 

Using t h e  f i r s t  or&; W Z V ~  frrzc'_ion obta ized  3y the  'new' pe r tu rba t ion  

theory  as  a t r i a l  wave fur-czrzn f o r  zi Rayleigh-SchrBdinger t rea tment  

w e  o b t a i n  

I f  w e  t ake  t h e  second order  energy given by t h e  Hirschfe lder -Si lbey  

theory  ( 6 )  and s u b s t i t u t e  i n  (I&> w e  have 

This  r e l a t i o n s h i p  does i l~ t  appear t o  glve any r e s t r i c t i o n s  t o  t h e  s i g n  of 

(a (27 
so  the  p o s i t i v e  -~ai:.ies of e,, need n o t  be a cause f o r  ($1 

concern. 

From an examination of Ta'aLe 2 we  see t h a t  us ing  a b a s i s  of e -% (0) 

t oge the r  wi th  t h e  2 ~ , 2 p , 3 ~ , 3 ? , 3 d , ~ s , 4 ~ , 4 d , 4 f , 5 g  Luwdin o r b i t a l s  t h e  

ungerade energy (i) i s  very  c l o s e  t o  t h e  ' e x a c t '  va lue  given by Peek (4) . 



However t h e  gerade energy €,(I) compares r e l a t i v e l y  poorly wi th  Peek ' s  

va lue  and i n  f a c t  w e  s ee  t h a t  t h e  b a s i s  set of 8 func t ions  gave a b e t t e r  

va lue  f o r  

b a s i s  se ts  should be  used i n  an attempt t o  o b t a i n  convergence of &(A) 
and 

we a l r eady  have f o r  t h e  ungerade energy it would appear t h q t  t h e  method 

i s  capable of g iv ing  f a i r l y  accu ra t e  r e s u l t s .  

&(I) . It seems c l e a r  from t h e s e  r e s u l t s  t h a t  l a r g e  

€,,(I) t o  some s t eady  va lue .  However, judging from t h e  r e s u l t s  
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Appendix 

L 

I 
\. 

The following integrals  are used i n  the so lut ion of the matrix 

equation (11) and i n  the evaluation of the energy terms. 

W e  de f ine  

I& I s  the molecular bond length. 

1. 
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